21 research outputs found

    An adaptive, hanging-node, discontinuous isogeometric analysis method for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    Get PDF
    In this paper a discontinuous, hanging-node, isogeometric analysis (IGA) method is developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation in two-dimensional space. The complexities involved in upwinding across curved element boundaries that contain hanging-nodes have been addressed to ensure that the scheme remains conservative. A robust algorithm for cycle-breaking has also been introduced in order to develop a unique sweep ordering of the elements for each discrete ordinates direction. The convergence rate of the scheme has been verified using the method of manufactured solutions (MMS) with a smooth solution. Heuristic error indicators have been used to drive an adaptive mesh refinement (AMR) algorithm to take advantage of the hanging-node discretisation. The effectiveness of this method is demonstrated for three test cases. The first is a homogeneous square in a vacuum with varying mean free path and a prescribed extraneous unit source. The second test case is a radiation shielding problem and the third is a 3×3 “supercell” featuring a burnable absorber. In the final test case, comparisons are made to the discontinuous Galerkin finite element method (DGFEM) using both straight-sided and curved quadratic finite elements

    Isogeometric analysis for the multigroup neutron diffusion equation with applications in reactor physics

    No full text
    Isogeometric Analysis (IGA) has been applied to heterogeneous reactor physics problems using the multigroup neutron dif- fusion equation. IGA uses a computer-aided design (CAD) description of the geometry commonly built from Non-Uniform Rational B-Splines (NURBS), which can exactly represent complicated curved shapes such as circles and cylinders, common features in reactor design. This work has focused on comparing IGA to nite element analysis (FEA) for heterogeneous reactor physics problems, including the OECD/NEA C5G7 LWR benchmark. The exact geometry and increased basis function continuity contribute to the accuracy of IGA and an improvement over comparable FEA calculations has been observed

    Optimal trace inequality constants for interior penalty discontinuous Galerkin discretisations of elliptic operators using arbitrary elements with non-constant Jacobians

    Get PDF
    In this paper, a new method to numerically calculate the trace inequality constants, which arise in the calculation of penalty parameters for interior penalty discretisations of elliptic operators, is presented. These constants are provably optimal for the inequality of interest. As their calculation is based on the solution of a generalised eigenvalue problem involving the volumetric and face stiffness matrices, the method is applicable to any element type for which these matrices can be calculated, including standard finite elements and the non-uniform rational B-splines of isogeometric analysis. In particular, the presented method does not require the Jacobian of the element to be constant, and so can be applied to a much wider variety of element shapes than are currently available in the literature. Numerical results are presented for a variety of finite element and isogeometric cases. When the Jacobian is constant, it is demonstrated that the new method produces lower penalty parameters than existing methods in the literature in all cases, which translates directly into savings in the solution time of the resulting linear system. When the Jacobian is not constant, it is shown that the naive application of existing approaches can result in penalty parameters that do not guarantee coercivity of the bilinear form, and by extension, the stability of the solution. The method of manufactured solutions is applied to a model reaction-diffusion equation with a range of parameters, and it is found that using penalty parameters based on the new trace inequality constants result in better conditioned linear systems, which can be solved approximately 11% faster than those produced by the methods from the literature

    Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    No full text
    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates () equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the “exact” adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem

    A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation

    Get PDF
    In this paper a method is presented for the application of energy-dependent spatial meshes applied to the multigroup, second-order, even-parity form of the neutron transport equation using Isogeometric Analysis (IGA). The computation of the inter-group regenerative source terms is based on conservative interpolation by Galerkin projection. The use of Non-Uniform Rational B-splines (NURBS) from the original computer-aided design (CAD) model allows for efficient implementation and calculation of the spatial projection operations while avoiding the complications of matching different geometric approximations faced by traditional finite element methods (FEM). The rate-of-convergence was verified using the method of manufactured solutions (MMS) and found to preserve the theoretical rates when interpolating between spatial meshes of different refinements. The scheme’s numerical efficiency was then studied using a series of two-energy group pincell test cases where a significant saving in the number of degrees-of-freedom can be found if the energy group with a complex variation in the solution is refined more than an energy group with a simpler solution function. Finally, the method was applied to a heterogeneous, seven-group reactor pincell where the spatial meshes for each energy group were adaptively selected for refinement. It was observed that by refining selected energy groups a reduction in the total number of degrees-of-freedom for the same total L2 error can be obtained

    Spatial adaptivity of the SAAF and Weighted Least Squares (WLS) forms of the neutron transport equation using constraint based, locally refined, isogeometric analysis (IGA) with dual weighted residual (DWR) error measures

    Get PDF
    This paper describes a methodology that enables NURBS (Non-Uniform Rational B-spline) based Isogeometric Analysis (IGA) to be locally refined. The methodology is applied to continuous Bubnov-Galerkin IGA spatial discretisations of second-order forms of the neutron transport equation. In particular this paper focuses on the self-adjoint angular flux (SAAF) and weighted least squares (WLS) equations. Local refinement is achieved by constraining degrees of freedom on interfaces between NURBS patches that have different levels of spatial refinement. In order to effectively utilise constraint based local refinement, adaptive mesh refinement (AMR) algorithms driven by a heuristic error measure or forward error indicator (FEI) and a dual weighted residual (DWR) or goal-based error measure (WEI) are derived. These utilise projection operators between different NURBS meshes to reduce the amount of computational effort required to calculate the error indicators. In order to apply the WEI to the SAAF and WLS second-order forms of the neutron transport equation the adjoint of these equations are required. The physical adjoint formulations are derived and the process of selecting source terms for the adjoint neutron transport equation in order to calculate the error in a given quantity of interest (QoI) is discussed. Several numerical verification benchmark test cases are utilised to investigate how the constraint based local refinement affects the numerical accuracy and the rate of convergence of the NURBS based IGA spatial discretisation. The nuclear reactor physics verification benchmark test cases show that both AMR algorithms are superior to uniform refinement with respect to accuracy per degree of freedom. Furthermore, it is demonstrated that for global QoI the FEI driven AMR and WEI driven AMR produce similar results. However, if local QoI are desired then WEI driven AMR algorithm is more computationally efficient and accurate per degree of freedom

    Discontinuous Galerkin spatial discretisation of the neutron transport equation with pyramid finite elements and a discrete ordinate (SN) angular approximation

    Get PDF
    In finite element analysis it is well known that hexahedral elements are the preferred type of three dimensional element because of their accuracy and convergence properties. However, in general it is not possible to mesh complex geometry problems using purely hexahedral meshes. Indeed for highly complex geometries a mixture of hexahedra and tetrahedra is often required. However, in order to geometrically link hexahedra and tetrahedra, in a conforming finite element mesh, pyramid elements will be required. Until recently the basis functions of pyramid elements were not fully understood from a mathematical or computational perspective. Indeed only first-order pyramid basis functions were rigorously derived and used within the field of finite elements. This paper makes use of a method developed by Bergot that enables the generation of second and higher-order basis functions, applying them to finite element discretisations of the neutron transport equation in order to solve nuclear reactor physics, radiation shielding and nuclear criticality problems. The results demonstrate that the pyramid elements perform well in almost all cases in terms of both solution accuracy and convergence properties

    P-Multigrid expansion of hybrid multilevel solvers for discontinuous Galerkin finite element discrete ordinate (DG-FEM-SN) diffusion synthetic acceleration (DSA) of radiation transport algorithms

    Get PDF
    Effective preconditioning of neutron diffusion problems is necessary for the development of efficient DSA schemes for neutron transport problems. This paper uses P-multigrid techniques to expand two preconditioners designed to solve the MIP diffusion neutron diffusion equation with a discontinuous Galerkin (DG-FEM) framework using first-order elements. These preconditioners are based on projecting the first-order DG-FEM formulation to either a linear continuous or a constant discontinuous FEM system. The P-multigrid expansion allows the preconditioners to be applied to problems discretised with second and higher-order elements. The preconditioning algorithms are defined in the form of both a V-cycle and W-cycle and applied to solve challenging neutron diffusion problems. In addition a hybrid preconditioner using P-multigrid and AMG without a constant or continuous coarsening is used. Their performance is measured against a computationally efficient standard algebraic multigrid preconditioner. The results obtained demonstrate that all preconditioners studied in this paper provide good convergence with the continuous method generally being the most computationally efficient. In terms of memory requirements the preconditioners studied significantly outperform the AMG

    Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    Get PDF
    In this paper two discontinuous Galerkin isogeometric analysis methods are developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation. The discontinuous Galerkin projection approach was taken on both an element level and the patch level for a given Non-Uniform Rational B-Spline (NURBS) patch. This paper describes the detailed dispersion analysis that has been used to analyse the numerical stability of both of these schemes. The convergence of the schemes for both smooth and non-smooth solutions was also investigated using the method of manufactured solutions (MMS) for multidimensional problems and a 1D semi-analytical benchmark whose solution contains a strongly discontinuous first derivative. This paper also investigates the challenges posed by strongly curved boundaries at both the NURBS element and patch level with several algorithms developed to deal with such cases. Finally numerical results are presented both for a simple pincell test problem as well as the C5G7 quarter core MOX/UOX small Light Water Reactor (LWR) benchmark problem. These numerical results produced by the isogeometric analysis (IGA) methods are compared and contrasted against linear and quadratic discontinuous Galerkin finite element (DGFEM) SN based methods

    Virtual element methods for the spatial discretisation of the multigroup neutron diffusion equation on polygonal meshes with applications to nuclear reactor physics

    No full text
    The Continuous Galerkin Virtual Element Method (CG-VEM) is a recent innovation in spatial discretisation methods that can solve partial differential equations (PDEs) using polygonal (2D) and polyhedral (3D) meshes. This paper presents the first application of VEM to the field of nuclear reactor physics, specifically to the steady-state, multigroup, neutron diffusion equation (NDE). In this paper the theoretical convergence rates of the CG VEM are verified using the Method of Manufactured Solutions (MMS) for a reaction-diffusion problem in the presence of both highly distorted and non-convex elements and also in the presence of discontinuous material data. Finally, numerical results for the 2D IAEA and the 2D C5G7 industrial nuclear reactor physics benchmarks are presented using both block-Cartesian and general polygonal meshes
    corecore